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The density localization method previously described is applied to the homonuclear diatomic 
molecules Liz, Be2, B2, C2, N2, and F 2. The method is based on the minimization of the sum of the 
interorbital density overlap integrals. The results of the density localization method are compared with 
the results of the energy localization method of Edmiston and Ruedenberg and with the results of the 
localization procedures of Boys and of Magnasco and Perico. The agreement among the four methods 
is in general good. With one exception we obtain also agreement with the classical chemical concepts 
of electron pairs. 

Die Dichtelokalisierungsmethode, die in einer friiheren Arbeit beschrieben worden ist, wird auf 
die homonuklearen zweiatomigen Molektile Li2, Be2, B2, C2, N 2 und F 2 angewandt. Die Methode 
beruht auf der Minimierung der Summe der Dichteiiberlappungsintegrale zwischen verschiedenen 
Orbitalen. Die Ergebnisse der Dichtelokalisierungsmethode werden mit den Resultaten der Energie- 
lokalisierungsmethode yon Edmiston und Ruedenberg sowie mit denen der Lokalisierungsverfahren 
yon Boys und yon Magnasco und Perico verglichen. Die Ubereinstimmung der Ergebnisse ist im 
allgemeinen gut. Mit einer Ausnahme entsprechen sie den klassisch-chemischen Vorstellungen. 

1. Introduction 

In a previous paper [1] - we refer to it as I - we have in t roduced the density 
localization method  as an intrinsic localization method  for a tomic and molecular  
orbitals. With  this approach  we took  up an earlier suggestion of  Edmis ton und 
Ruedenberg [-2, 3]. The density localized molecular  orbitals are defined to be 
those orbitals which minimize the sum of the interorbital density overlap integrals. 
In I we have presented the applicat ion of the density localization method to the 
two a toms Be and Ne. We now apply the method  to the homonuc lear  diatomic 
molecules Li z, B%, B2, C2, Nz,  and F2. The results are compared  with those of the 
energy localization method  of  Edmis ton  and Ruedenberg I-2, 4], and of the 
localization procedures  of  Boys I-5, 6] and of  Magnasco  and Perico [7]. The aim 
has been to investigate the general qualitative and quanti tat ive agreement among  
these four localization methods  and in part icular  the similarity between the energy 
and the density localized molecular  orbitals (ELMO's ,  D L M O ' s )  expected because 
of  the physical relation between exchange interaction and density overlap. For  all 
molecules listed above we obtain agreement  among  the results of the four localiza- 
tion methods  and with the chemical concepts except for the Cz molecule. The 
quanti tat ive numerical  agreement  a m o n g  the four methods is in general quite 
good. In some cases the results of  the method  of  Magnasco  and Perico show 
greater deviations, but  no general trend can be established. 
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In Section 2 we give a description of the density localization method, and in 
Section 3 a short outline of the three other localization methods applied. Some 
computational aspects will be considered in Section 4 and the calculations are 
discussed in Section 5. 

2. Outline of the Density Localization Method 

We are restricting our considerations to the case of a one-determinantal 
approximation to a wavefunction with doubly filled orthonormal orbitals as for 
example determined by a SCF calculation. For a 2n electron system the wave- 
function [~> may be written as (for the notation see I) 

I~> = (2n!) 1/2 ~r  ... I n + > [ n - > } ,  (1) 

where d is the antisymmetric projection operator with d 2 = d .  The row matrix 
of molecular orbitals (MO's): 

1~):= (11) . . . . .  li> . . . . .  In)), (2) 

can be subjected to a unitary transformation without changing the wavefunction 
I~> itself. The density localized atomic and molecular orbitals are defined as those 
orbitals resulting from the unitary transformation which minimizes the sum of all 
density overlap integrals between the orbitals: 

D = ~ [i2j2-] = min,  (3) 
i < j  

where the density overlap between orbitals Ii) and [j) is defined by 

[-i2j2] := ~ Kr I i>12 Kr iJ>12 dar 

and the charge density of some orbital li) is given by I(r l i)[ 2. It is to be noted that 
the quantity ~ [i2j27 is invariant under unitary transformations, whereas the 

i , j  

terms ~, [i4] and ~ [-i2j2-], into which it can be decomposed, are not invariant. 
i i§ 

Minimization of D is equivalent to maximization of ~ [i4], which is the sum of the 
i 

self-overlaps of the charge densities. 
The localization is done via a sequence of pairwise rotations of the orbitals 

in the vector space spanned by them which are chosen such that the maximum 
decrease in D is obtained. Convergence to the DLMO's is reached if for all pairs 
of orbitals ]i>, [j> the following conditions hold: 

with [iajl - [ij3] = 0 (5) 

[ijkl] := ~ (i I r> ( r  [j> <klr > ( r  I l> d a r .  (6) 

Numerically it may be more convenient to test the decrease in D directly. Con- 
vergence is reached, if any further decrease in D is smaller than a given threshold. 
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3. Energy, Boys, and Magnasco-Perico Localization Methods 

Because the results of the density localization method will be compared to 
those of the energy localization method, the Boys, and the Magnasco-Perico 
localization method, the bases of these methods are briefly described in this section. 
For a more detailed discussion we refer to the original literature. In the energy 
localization method of Edmiston and Ruedenberg [2, 4], which is based on an 
earlier suggestion of Lennard-Jones and Pople [8J, the sum of the orbital self- 
interaction energies is maximized and thus the sum of the exchange and Coulomb 
energies between the orbitals minimized. The electron interaction energy 

E = 2 ~ Ei 2 Ij2J - Z Eql i j ]  (7) 
i , j  i , j  

consists of two terms, the Coulomb and exchange energy, which are separately 
invariant under unitary transformations. This is not the case for the term 
O = 2 [i21i2] occurring in both energy terms. Maximization of D, which is the 

i 
orbital self-interaction energy, defines the ELMO's. Maximization of D implies 
the minimization of the terms 

2 ~, ri 2 [j2-] and ~ Eij[ij3 (8) 
i:/:j i ~ j  

which are the Coulomb and exchange energies between the orbitals. This fact is 
important for the physical interpretation. 

The method of Boys [5, 6] consists in maximizing the sum of the squares of the 
distances between the charge centroids of the orbitals 

D = ~, f ( i l r l i )  - ( j l r  I.j)] 2 . (9) 
i , j  

This has been shown by Boys to be equivalent to the minimization of 

I = ~ (iilr~2 l i i )  (10) 
i 

which Boys calls the sum of the quadratic repulsions of the orbitals with them- 
selves [6]. The first formula is more convenient for computations because then 
only the 3n 2 dipole moment matrix elements are required. 

In the procedure of Magnasco and Perico [7] one starts with the definition 
of local electron populations for each MO. They have to be localized around 
atoms or between pairs of atoms, forming inner shells and lone pairs of electrons 
and bonds. This makes necessary a concept of the orbital structure prior to 
localization. For each orbital a local electron population is defined 

Pi: = ~ CpiCqi(plq), (11) 
p, qEFi 

where F i denotes the set of functions contributing to this population. By maxi- 
mizing the expression 

P -- ~ Pi (12) 

the uniformly localized orbitals of Magnasco and Perico (MPLMO's) are ob- 
tained. The arbitrariness of the method is contained in the definition of the sets 
F i. It is an external method. 
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4. Computational Aspects 

In I we have commented qualitatively on the computational aspects of the 
energy and the density localization method. We would like to come back to this 
point and compare the computational expense of all four localization methods 
under investigation. The two-electron integrals required for the energy localization 
procedure are in general available from the SCF calculation, but they have to be 
transformed to the basis of the occupied molecular orbitals. For the density 
localization method the basic density overlap integrals have to be computed and 
then transformed to the basis of the molecular orbitals. The calculation of these 
basic integrals as well as their transformation is significantly simplified by the 
high degeneracy of these integrals compared to the two-electron energy integrals. 
They are invariant with respect to any permutation of the four indices. It turned 
out that for the energy localization method the basis transformation of the integrals 
is computationally dominant in the cases considered. For the density localization 
procedure the dominant part is the calculation of the basic integrals. Comparing 
the calculation times of the energy, density, Boys, and Magnasco-Perico localiza- 
tion methods we find that the first two use large amounts of computer time, 
because the computation time is proportional to at least the fifth power of the 
number of basis functions. Which of the two methods, the energy or the density 
localization method, is faster cannot be stated in general. For small systems the 
energy localization method seems to be faster while for larger systems the density 
localization method becomes more and more favourable. The computation time 
of the Boys and the Magnasco-Perico localization method is proportional to the 
second power of the number of basis functions. The two methods are thus very 
fast and require few seconds of computer time on an IBM 360/91 computer for 
the largest molecules examined. For basis sets of 9s-type and 5p-type Gaussian 
lobe functions contracted to 5s-type and 3p-type functions for the second row 
atoms and of 4s-type functions for the H atom (contracted to 2s-type functions) 
some typical computation times are given in Table 1. 

To investigate the sensitivity of the LMO's to a change in the wavefunction 
and to a different choice of starting point in the numerical process of localization 
the C 2 and N 2 molecules were examined in more detail. For C 2 (la0 2 la~ 2a~ 
2a 2 ln4,1Z~) Edmiston and Ruedenberg [9] analyzing the wavefunction of 
Ransil [10] did not find equivalent orbitals as LMO's. We have calculated a fair 

Table 1. Typical computation times in minutes for the energy 

Molecule Energy localization 
method 

and the density localization method" 

Density localization 
method 

C2 1.4 3.7 
N 2 2.2 3.8 
F 2 5.2 4.4 
HF 0.13 0.5 
H20  0.4 0.7 
NH 3 1.05 1.1 
CH4 1.9 1.5 

= The numbers refer to an IBM 360/91 computer. 
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number of wavefunctions for this molecule with basis sets of type (5/1), (5/2), (7/3), 
and (9/5) with different contractions [11-14]. From our results we can draw the 
following conclusions. For  a given wavefunction and a given localization method 
only one set of LMO's is obtained as solution, but if different wavefunctions are 
examined by the same localization method sets of LMO's differing qualitatively 
can be obtained. This was found for the density and the Boys localization method; 
for the Edmiston-Ruedenberg localization method on the other hand the solutions 
were always of the same type. 

For the N2 molecule a number of wavefunctions were calculated using the 
same basis sets as described for C2. In all cases the methods of Edmiston and 
Ruedenberg and of Boys gave the same results, but we had some difficulties when 
applying the density localization method. For internuclear separations larger 
than 2.3 a.u. the answer was unique: trigonally equivalent banana bond orbitals 
resulted. But at the experimental distance of 2.0693 a.u. some wavefunctions gave 
distorted bond orbitals as solutions. The reason for this sensitivity of the density 
localization method might be the tight bonding structure of N2 and the short 
range character of the 6-function potential which is the basis of this method. 
Aside from these two cases no indications for different sets of LMO's as solutions 
were found with other molecules. However, a further example will be discussed in 
another context [15]. 

To examine the existence of multiple extrema, we took different starting 
points for the localization. In all cases investigated convergence to the same 
solution was achieved. This does not disprove the existence of multiple extrema, 
we only did not find any. 

5. The Calculations 

Programs have been written to calculate SCF wavefunctions and from these 
the energy, density, Boys, and Magnasco-Perico localized molecular orbitals. 
We present here the results for the homonuclear diatomic molecules Liz, B%, 
B2, C2, N2, and Fz. The basis functions used are the Gaussian lobe functions. For  
all atoms except the H atom 9 functions of s-type are used, the 5 with the largest 
exponents being contracted into one group. For  the H atom 4 functions of s-type 
are used, the two with the largest exponents contracted into one group. The 
exponents and contraction coefficients are taken from Huzinaga's paper [13]. 
For  the Li and Be atom 2 functions of p-type are used. The exponents r /and the 
distance R from the center are for Li: ~/1 =0.5, R 1 = +0.075a.u., t/z = 2.0, 
R 2 = +0.065 a.u. and for Be: ql = 0.6, R 1 = __0.07 a.u., t/2 = 2.4, R 2 = +0.06 a.u. 
For  the atoms from B to F 5 functions of p-type are used, the three with the largest 
exponents contracted to one group with exponents and contraction coefficients as 
given by Whitten [14]. 

The results we obtained for the LMO's of these molecules agree qualitatively 
with the results given by Edmiston and Ruedenberg [4, 9] except for the C2 
molecule. We are going to discuss this case in detail below. The following con- 
clusions can be drawn from a comparison of the different localized orbitals: The 
numerical agreement is very satisfactory in general among the results of the 
intrinsic methods. The best agreement is found between the LMO's of the energy 
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and the Boys localization methods. The agreement between the ELMO's and 
DLMO's is nearly as good. The more "important" coefficients (c > 0.1) in the 
expansion of the LMO's often agree to two and sometimes three significant 
figures, which is quite satisfactory in view of the fact that different separation 
functions are used in these three methods. The results of the Magnasco-Perico 
procedure show greater deviations, although there is good agreement with the 
results of the other methods in some cases. It is difficult to understand why the 
agreement is good in some cases and only fair in others. The s-type Gaussian 
functions with small exponents give the largest contribution to the inner shell 
LMO's of the heavy atoms in the case of the MPLMO's and smaller contributions 
in the case of the DLMO's, ELMO's, and the LMO's of Boys (BLMO's). If equiv- 
alent orbitals are found for a molecule the equivalence is in general numerically 
best fulfilled for the BLMO's and the MPLMO's and is not so good for the DLMO's 
and the ELMO's. The reason might be the insensitivity (to a variation in the LMO's) 
of the potential used as the separation function and the amount of numerical 
processes involved. 

It has been stated in the literature [7, 16] that for molecules containing lone 
pairs of electrons the MPLMO's have a larger 2p-contribution in the lone pair 
orbitals than do the ELMO's and that the reverse is true for the bond orbitals. 
We have examined a fairly large number of molecules, some of which have not 
been analyzed from this point of view so far, and our results are not in complete 
agreement with this statement. In Table 2 we give the local 2p-type populations 
for several atoms for the lone pair and bond orbitals obtained by the energy, 
density, Boys, and Magnasco-Perico localization method. We have added the 
results for a number of other molecules which we shall discuss in more detail in a 
subsequent paper [-15]. In most cases the BLMO's have about the same 2p- 
contribution as the ELMO's. But apparently no general statement can be made 
about the 2p-contribution to the MPLMO's compared to the ELMO's. For the 
atoms F in F2, F in LiF, B in BF, N in NH3, and O in H20 the MPLMO's exhibit 
a larger 2p-contribution in the lone pair orbital (and a smaller 2p-contribution in 
the bond orbital) than do the ELMO's in agreement with previous work. The 

Table 2. 2p-type populat ions of unnormalized hybrids on different a toms in bond and lone pair L M O ' s  

Bond orbital Lone pair orbital 

Atom E L M O  D L M O  B L M O  M P L M O  E L M O  D L M O  B L M O  M P L M O  

B in B z 0.1973 0.2045 0.1904 0.2492 0.2067 0.2006 0.2122 0.1673 
N in Nz 0.3046 0.3119 0.2997 0.3362 0,2618 0.2417 0.2735 0.1883 
F in F 2 0,3768 0.3909 0.3452 0.3695 0.6888 0.6847 0.6956 0.6904 
F in LiF 0.7039 0.7000 0.7008 0.5701 0.7413 0.7407 0,7426 0.7842 
B in BF 0.0525 0.0600 0.0477 0.0457 0.1118 0.1039 0.1170 0.1188 
F in BF 0.5735 0.5753 0.5828 0.6074 0,6756 0.6768 0.6714 0.6571 
N in BN 0.3863 0.3359 0.4087 0.4328 0.2245 0.3533 0.1601 0.0619 
C in CO 0.1259 0.1371 0.1223 0.1387 0.1765 0.1615 0.1928 0.1722 
O in CO 0.5091 0,3912 0.5130 0.5834 0.4007 0.5142 0.3823 0.1749 
N in NH3 0.3303 0.3316 0.3280 0.2999 0.7026 0.6982 0.7095 0.7912 
O in HzO 0.3929 0.3954 0.3884 0.3497 0.7005 0.6979 0.7051 0.7423 
F in HF  0.4799 0.4803 0.4712 0.4973 0.7162 0.7162 0.7197 0.7109 
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Table 3. Bond distances (R) and total SCF energies (E) 

Molecule R [a .u . ]  E [a .u . ]  

Li z 5.0504 - 14.8626115 
Be 2 3.78 - 29,0862513 
B 2 3.0028 - 49 .0324955 
C2 2.4788 - 75.3576030 
N 2 2.0693 - 108.8862996 
Fz 2.6791 - 1 9 8 . 7 0 5 8 3 4 3  

reverse is true for B in B2, N in Na, N in BN, F in BF, C in CO, O in CO, and 
F in HF. It seems also that there is a dependence on the wavefunction. 

The results for the individual molecules are discussed in more detail in the 
following. Table 3 contains information about the geometry and the total energies 
obtained. Because of the length of the Gaussian function expansions of the 
orbitals we do not give them here. Instead only the transformation matrices from 
the canonical MO's (CMO's) to the LMO's are given. This seems to be the most 
useful information, because, as Edmiston and Ruedenberg [4] stated, the trans- 
formation matrices are approximately independent of the size of the basis set used 
to approximate the wavefunction. The signs of the CMO's are chosen in the 
following way: The largest coefficient of an s-type function in the expansion of a 
particular CMO or of a 2pn-type function is given the positive sign. If there are 
two coefficients of equal magnitude and opposite sign, the first one carries the 
positive sign. In cases of degeneracy or of wavefunctions differing considerably 
in the basis set size this might not be sufficient, but this choice of the signs should 
eliminate the major uncertainties [17]. The transformation matrices for the four 
localization methods are given in Tables 4-10 for the different molecules. 

Table 4. Transformation matrices for Li2 

ENERGY LOCALIZATION 

ILl iLi' boLiLl' 

log 0.70373 0.70373 0.09763 
io u 0.70711 -0.70711 0.00000 
2 ~  -0.06903 -0.0690 3 0,99522 

DENSITY LOCALIZATION 

iLl ILl' bqLiLi' 

leg 0.69921 0.~9921 0,14908 
I ~  0.70711 -0.70711 0,0 
2og -0,10541 -0.10541 0,98889 

BOYS LOCALIZATION 

iLi iLl' boLiLi' 

1~g 0.70705 0,70705 0.01264 
I~ u 0.70711 -0.70711 0.0 
2~ -0~ -O.OOBgB 0.99992 

MAGNASCO-PERICD LOCALIZATION 

iLi iLl' boLiLi' 

l~g 0.68976 0.68976 0.22013 
lq~ 0.70711 --0.70711 0.0 
2~g -0~ --0.15565 0.97547 
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The LMO's resulting from the Magnasco-Perico localization method cannot 
be directly compared to the other LMO's, because orbitals of e- and ~-type 
symmetry are not mixed. Therefore a unitary transformation [7] has been applied 
after the localization. 

Li2 (Table 4) 

Localization yields an inner shell on each Li atom and a bond orbital con- 
necting the two atoms (Table 4). As mentioned previously the most important 
change in the localization functions results from the combination of the 1% and 
1~, orbitals. The exchange integrals change by about a factor of 200 and the density 
overlap integrals by about a factor of 400. Similar figures apply to all homo- 
nuclear diatomic molecules. The transformation matrices are nearly an identity 
with respect to the bond orbital. 

Be 2 (Table 5) 

Be2 is a "nonbonded molecule". Consequently we obtain by localization an 
inner and an outer shell on each Be atom. The localization consists essentially in a 
left-right combination of la 0 and lo-, on the one hand and of 2% and 2a, on the 
other hand, as indicated by the transformation matrices (Table 5). Because of the 
arbitrariness in the choice of the local electron populations in the Magnasco- 
Perico method a starting point can be selected that gives rise to two bonds as 
LMO's. This is perhaps the simplest example of forcing an unreasonable result. 
But it should be mentioned that in other cases (LiF e.g.) this method is fairly 
independent of the initial choice of the local electron populations. 

Table 5. Transformation matrices for Be 2 

ENERGY LOCALIZATION 

iBe iBe' %oBe ~Be' 

10~ 0.70160 0~70160 0.08809 0.08809 
i~ u O.70B3Z -0.70~32 0.07514 -0.07312 
20~ -0.08810 -0.08808 0.70160 0.70160 
2~ u -0,07313 0,07312 0.70331 -0.70332 

DENSI ~ LOCALIZATION 

iBe IBe' ~.oBe ~qBe' 

10~ 0.69564 0.69564 0~ 0,12685 
1~ u 0.69900 --0.69900 0.10679 --0.10679 
20 ~ --0.1268S --0.12685 0.69564 0.69564 
2G~ --0.10679 0.i0679 0.69900 --0.69900 

BOYS LOCALIZATION 

iBe iBe' s %~Be' 

lo  Z 0 . 7 0 7 0 8  0 . 7 0 7 0 8  -0.00668 -0.00668 
10 u 0 , 7 0 6 8 0  - 0 . 7 0 6 8 0  - 0 . 0 2 0 9 0  0 . 0 2 0 9 0  
2o~ 0.00668 0.00668 0.70708 0.70708 
20 u 0.02090 -0.02090 0.70680 -0.70680 

MAGNASCO-PERICO LOCALIZATION 

iBe iBe'  ZoBe ZoBe' 

lag 0.68188 0.68188 0.18719 0.18719 
1~ U 0.69619 -0.69619 0.12377 -0,12377 
2Og -0.18719 -0.18719 0.68188 0.68188 
2~ u -0.12977 0.12377 0o69619 -0,69619 
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Table 6. Transformation matrices for B 2 

ENERGY LOCALIZATION 

iB IB' bqBB' ~cB %~B' 

lq~ 0.70099 0.70099 0,10140 0,05899 0~ 
i~ 0.70299 -0,70299 -0.00000 0 . 0 7 6 1 6  - 0 . 0 7 6 1 6  
20~ - 0 , 0 8 8 5 2  - 0 , 0 8 8 5 3  0 , 9 2 1 2 4  0 , 2 6 0 4 3  0~ 
2o~ - 0 , 0 7 6 1 6  0 , 0 7 6 1 6  0 , 0 0 0 0 0  0 , 7 0 2 9 9  - 0 , 7 0 3 0 0  
3Og - 0 , 0 2 7 8 8  - 0 , 0 2 7 8 8  - 0 , 3 7 5 5 5  0 , 6 5 4 7 6  0 , 6 5 4 7 5  

DENSITY LOCALIZATION 
IB IB' b~BB' ~B %~B' 

l o g  0,69481 0,69481 0.14307 0,08370 0.08370 
1~ u 0 , 6 9 8 0 3  - 0 , 6 9 8 0 3  0 , 0  0 , 1 1 2 9 2  - 0 , 1 1 2 9 2  
20~ -0,12586 -0.12586 0~ 0,26929 0.26929 
2~ - 0 , 1 1 2 9 2  0 , 1 1 2 9 2  0 . 0  0 , 6 9 8 0 3  - 0 , & 9 8 0 3  
]og -0.03742 -0.03742 -0.39528 0.64844 0.64844 

BOYS LOCALIZATION 

iB IB' boBB' ~oB 5qB' 

1~g 0.70511 0,70511 0.05860 0,03312 0.03312 
la u 0,70611 -0.?0611 0,0 0.03744 -0,03744 
2qg -0.05053 -0.05053 0,93204 0,25120 0.25120 
2o u -0,03744 0.03744 0,0 0.70611 -0,70611 
3Og - 0 , 0 1 6 1 5  -0 ,016 .15  - 0 , 3 5 7 6 0  0 , 6 6 0 1 5  0 , 6 6 0 1 5  

MAGNASCO-PERICO LOCALIZATION 

iB iB I b~BB' hob ~oB' 

log 0.68728 0.68728 0.14354 0,13171 0.13171 
lOu 0,69~+7 -0,69347 0,0 0.13821 -0.13821 
2~g - 0 , 1 5 3 1 7  - 0 . 1 5 3 1 7  0 , 8 5 4 7 7  0 , 3 3 3 5 0  0 , 3 3 3 5 0  
2o u -0.13821 0.13821 0,0 0,69347 -0.69347 
3Og -0.06471 -0,06471 -0,49877 0.60945 0,60945 

B2 (Table 6) 

For the B 2 molecule the electronic configuration 10- 2 lo -z 2%2 20-u2 3o.0,2 lz~ 0+ 
was analyzed. After localization we find an inner shell and a lone pair orbital on 
each B atom and a bond orbital linking the two atoms (Table 6). This lone pair 
orbital has a marked s-type contribution, which is largest for the Magnasco- 
Perico LMO's and decreases for the energy, the Boys and the density localized 
orbitals in the given order. 

C z (Tables 7, 8) 

According to the literature [-9] the MO's of C2 wavefunctions are difficult to 
localize. The conclusions reached here are the following: The energy localization 
method gave rise to effectively no problems, only one set of LMO's resulted. The 
density localization method gave two different solutions depending on the wave- 
function examined. The method of Boys yielded two different solutions in most 
cases too, but sometimes did not converge and gave non-equivalent orbitals as 
intermediate solution. The method of Magnasco and Perico lead to easy con- 
vergence. A number of wavefunctions was examined for the C2 molecule in the 
electronic configuration 10- 2 10- 2 20- 9 20-~ 1~ 4, 1Z+ using basis sets of type (5/1), 
(5/2), (7/3), and (9/5) with different contraction coefficients and different para- 
meters for the p-type functions [-11-14]. We give representative results of our 
investigations without specifying the wavefunctions in detail [17]. For all wave- 
2 Theoret  chim. Acta (Berl.) Vol. 27 
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Table 7. Transformation matrices for C 2 

ENERGY LOCALIZAIION 

iC iC' blCC' b2CC' bSCC' b4CC' 

l~g 0.70074 0,70090 0,06650 0.06630 0.06655 0,06649 
I~ 0,70223 -0.70207 0.05908 0.05910 -0,05901 -0,05914 
20~ -0,09405 -0.09407 0,49558 0.49545 0,49583 0.49537 
2~ -0.08356 0.08355 0.49643 0,49665 -0.49587 -0,49704 
l~u -0,00001 -0,00001 -0,70675 0.70664 0.02423 -0,02398 

0.00001 0,00000 0.02353 -0.02469 0.70694 -0.70645 

DENSITY LOCALIZATION A 

IC IC' blCC' b2CC' b3CC' baCC' 
log 0,69267 0,69267 0~ 0.10052 0.10048 0,10050 
Io u 0,69383 -0.69383 0.09646 0.09642 -0.09649 -0.09644 
2og -0.14214 -0.14214 0.48982 0,48989 0,48970 0,48977 
20~ -0.13640 0,I~640 0,49067 0.49042 -0,49079 -0,49055 

0.0 0,00000 -0.51834 0,51329 -0,48103 0.48094 
l~u 0,0 0.0 0.48086 -0.48111 -0,51820 0.51844 

DENSITY LOCALIZATION B 

iC iC' blCC' b2CC' b3CC' b4CC' 

~ 0.69398 0.69414 0,01992 0.02005 0,13376 0.13368 
Io~ 0.69635 -0.69620 0,12332 -0,12328 0.00010 0,00002 
2q~ -0,13520 -0,13520 0,10223 0.10276 0.68665 0~ 
2q u -0.12330 0.12330 0.69635 -0.69620 0,00047 0,00004 
I~ u -0.00002 -0.00002 0,69920 0,69928 -0.09168 -0.11714 

0.00000 0.00000 -0.01284 -0.01241 0,70868 -0.70531 

BOYS LOCALIZATION A 

iC iC' bICC' b2CC' b3CC' b4CC' 

l o g  0 . 7 0 6 2 1  0 . 7 0 5 3 2  0 . 0 1 2 7 3  0 . 0 3 4 7 6  0 , 0 3 4 7 6  0 , 0 3 4 7 3  
20 u 0.70737 -0.70648 0.00553 -0.01273 -0,01271 -0,01263 
2Og -0.02964 -0.05113 0,555~9 0,47904 0,47899 0.47869 
20 U 0.00428 0.02806 0,83147 -0.32156 -0,32109 -0,31834 

0.00005 0.00001 0,00188 0.58761 0,19496 -0,78530 
1~u -0.00001 -0.00000 -0.00028 0,56609 -0,79252 0,22683 

BOYS LOCALIZATION B 

CC iC' bCCC' b2CC' D3CC' b4CC' 
lqg 0,70445 0.70452 0.04623 0.04621 0,03953 0.03953 
Io u 0.70622 -0.70616 0.03595 -0.03594 0.00003 0.00003 
2~ - 0 , 0 6 0 7 1  -0,06068 0.56349 0.56357 0.42279 0.42279 
2U~ -0.03596 0.03593 0.70597 -0.70642 0.00037 0.00037 

0.00315 0,00 316 0.34683 0,34612 -0,87013 -0.05258 
i~U 0 . 0 0 2 2 3  0 . 0 0 2 2 4  0 . 2 4 5 7 2  0 . 2 4 5 2 2  0 , 2 5 0 1 2  - 0 . 9 0 3 8 4  

functions examined the energy localization method gave one set of LMO's as 
solution (the transformation matrix for the wavefunction calculated with the (9/5) 
basis set is listed in Table 7). These ELMO's are equivalent orbitals. The analysis 
of the C2 wavefunction of Ransil [ 10] by Edmiston and Ruedenberg [9] did on the 
other hand not give equivalent orbitals of any kind. To describe the bonding 
orbitals which we have obtained (b 1 CC', b 2 CC', b 3 CC', and b 4 CC') their charge 
centroids are given in Table 8. These orbitals have the symmetry property expected 
of equivalent orbitals. Bond orbitals 1 and 2 are transformed into each other by a 
rotation through 180 ~ about the CC' axis, so are orbitals 3 and 4. A rotation 
through 90 ~ plus a reflection in the plane perpendicular to and bisecting the inter- 
nuclear axis transforms 1 into 3 and 2 into 4 and vice versa. From the trans- 
formation matrix in Table 7 it follows that these orbitals arise roughly in the 
following way: left-right combination of 2~r 0 and 20-, gives a 2s-type atomic orbital 
on atoms C and C', combination of the 2s orbital on atom C with the rex-canonical 
orbital gives orbitals 1 and 2 lying in the x -  z-plane in the neighbourhood of 
one C atom. A similar combination of the 2s orbital on atom C' with the ~y canon- 
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Table 8. Charge  centroids of the bond ing  orbitals  in C2 ~ 
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Orbi ta l  Me thod  x y z 

b 1 CC'  Energy 0.588 0.008 0.749 
b 2 CC'  - 0.588 - 0.007 0.749 
b 3 CC'  0.008 - 0.589 1.730 
b 4  CC'  - 0.008 0.588 1.730 

b 1 CC'  Densi ty  A - 0.003 0.574 0.679 
b 2 CC'  0.003 - 0.574 0.679 
b 3 CC'  0.574 0.003 1.799 

b 4 CC'  - 0.574 - 0.003 1.799 
b 1CC'  Densi ty  B - 0.121 - 0.004 1.094 
b 2 CC'  - 0.121 - 0.004 1.385 

b 3 C C '  0.145 - 0 . 8 1 6  1.239 
b 4 C C '  0.097 0.823 1.239 
b 1 CC'  Boys A 0.000 - 0.002 0.356 

b 2 C C '  - 0 . 5 0 7  - 0 . 4 1 8  1.535 

b 3 CC'  0.616 - 0.229 1.535 
b 4 CC'  - 0.109 0.648 1.532 
b 1 CC'  Boys B - 0 . 3 7 3  - 0 . 1 2 1  0.426 
b 2 C C '  - 0 . 3 7 2  - 0 . 1 2 1  2.053 

b 3 CC'  0.523 - 0.345 1.239 
b 4 C C '  0.222 0.586 1.239 

The molecule lies a long the z-axis with one C a tom in the origin the other  at a z-value of 2.4788 a.u. 

ical orbital gives orbitals 3 and 4 lying in the y - z-plane in the neighbourhood of 
the other C atom. 

The same type of orbital is obtained by the density localization method for a 
wavefunction calculated with a (5/1) basis set. The transformation matrix is given 
as "Density Localization A" in Table 7 and the charge centroids of the bonding 
orbitals are given in Table 8. An analysis of the wavefunction resulting from the 
(9/5) basis set gave a different type of orbital which is presented as "Density 
Localization B" in Table 7 and 8. These orbitals form two sets of equivalent 
orbitals. Orbitals b 1 CC' and b 2 CC' lie quite close to the middle of the bond, one 
to the left, one to the right. Orbitals b3CC' and b4CC'  have their charge centroids 
in the x -  y-plane defined by the middle of the bond. Result B was found most 
frequently in the analysis of the different wavefunctions. 

Applying the Boys localization method to a wavefunction calculated with a 
(7/3) basis set gave orbitals similar to type B described above. The results are 
given as "Boys Localization B" in Tables 7 and 8. Compared to the corresponding 
DLMO's  the charge centroids of the orbitals b 1 CC' and b 2 CC' lie much closer 
to the C atoms. They appear to be mixtures of bond and lone pair orbitals. Localiza- 
tion of the MO's of a similar (7/3) wavefunction using slightly different para- 
meters for the p-functions by the Boys method gave still a new set of LMO's, 
which are unsymmetric with respect to the two C atoms. All four orbitals are 
mixtures of lone pair and bonding orbitals. A single orbital is placed at one C 
atom and three trigonally equivalent orbitals are placed at the other C atom. 
There are two degenerate solutions of this type with the C atoms interchanged. We 
list one solution in Tables 7 and 8 ("Boys Localization A"). These two types of 
2* 
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Table 9. Transformation matrices for N z 

ENERGY LOCALIZATION 

iN iN' ZoN s btlNN' bt2NN' bt3NN' 

log 0.69991 0.69991 0.0~983 0,05984 0.06615 0.06608 0.06596 
io u 0.70195 -0.70196 0.08523 -0.08523 -0.00001 0.00001 -0.00000 
2Og -0.09417 -0.09417 0.18904 0,18903 0.55172 0,55125 0.55002 
20 u -0.08522 0.08523 0,70194 -0.70196 0,00000 0,00000 -0,00001 
50~ -0.03547 -0.03548 0t67875 0.67873 -0.15976 -0.15942 -0,15866 
i~ u 0.00001 0.00002 -0.00008 -0.00007 -0.67895 0.73Z28 -0.05281 

0.00000 0.00000 -0.00028 -O,O00Z9 -0.45247 -0,36070 0,81558 

DENSITY LOCALIZATION 

iN iN' Z~N %oN' btl~h~' bt2!{N' bt3NN' 
log 0.69276 0.69276 0.07955 0.07956 0.09726 0,09679 0.09323 
iO u 0,69650 -0.69650 0.12200 -0.12200 0.00000 -0.00000 0.00000 
2Og -0.13724 -0,13724 0,290~I 0.23032 0.54423 0.54102 0.51706 
20 u -0.12200 0,12200 0.69650 -0.69650 0,00001 -0o00001 0,00001 
509 -0.03541 -0.03541 0,66375 0.66374 -0.20646 -0.20323 -0,18015 
i~ u 0.00000 0.00000 0.00070 0.00068 -0.61421 0.77229 -0,16221 

-0,00001 -O.O000l -0,00836 -0.00836 -0,52390 -0.24535 0.81559 

BOYS LOCALIZATION 

iN iN' ZoN ZcN' btiNN' bt2NN' bt3NN' 

log 0.70440 0.70440 0.0~408 0.03408 0.04207 0.04207 0.04207 
lq~ 0.70565 -0.70565 0.04531 -0.04531 0,0 0.0 -0.00000 
2og -0.05810 -0.08810 0.16508 0.16508 0.55939 0.58939 0,55939 
2o u -0,045 31 0.04531 0.70565 -0,70565 0,0 0,00000 0.0 
5Og -0,02099 -0.02099 0,68672 0.68672 --0,13655 --0.13655 -0,13655 
~g u 0.00000 0.0 0,0 0.0 --0.45401 --0,36071 0,8147Z 

0.0 0.0 0.0 0.00000 --0,67863 0.73250 --0.05387 

MAGNASCO-PERICO LOCALIZATION 

iN iN' ZoN g~N' btlNN' bt2~{N' bt31~N' 

~C~ 0.69123 0,6912 3 0.10911 0.10911 0.08283 0,08283 0,08283 
I~ 0.69697 -0.69697 0.11929 -0. I1929 0.0 0.0 0,0 
209 -0.14224 --0.14224 0.34004 0.34004 0.49271 0.49271 0,49271 
20 u -0.11929 0,11929 0.69697 -0,69697 0.0 0,0 0.0 
~Og -0.04432 -0.04432 0.61030 0.61030 -0=28933 -0,28933 -0,28933 

0.0 0.0 0.0 0.0 --0,81650 0.40825 0.40825 
I~U 0.0 0.0 0.0 0.0 0.0 --0.70711 0.70711 

orbitals are typical results of the Boys localization method, but other solutions 
are obtained too: orbitals of the type as described above but considerably distorted 
and nonequivalent orbitals. These were generally found if no satisfactory con- 
vergence in the localization process could be achieved. These results indicate that 
the hypersurface involved in the localization process is very flat in the neighbour- 
hood of the extremum. (See also the discussion in Ref. [9].) 

The orbitals resulting from the Magnasco-Perico localization are two inner 
shells, two 2s orbitals and two n-bonds. A mixing of the 2s- with the z-orbital is 
expected to give better localized orbitals (see above). However, it is not obvious 
which transformation has to be applied to give this result. The external character 
of the Magnasco-Perico method gives too great an arbitrariness in this case 
(see Section 3). 

Finally two things should be noted. All types of LMO's which we have found 
for the C2 molecule do not conform with the classical chemical concepts of electron 
pairs. Secondly different wavefunctions can give different sets of LMO's as solu- 
tions, but there is little indication of multiple extrema in the localization process, 
because in no case two different solutions have been obtained for a given wave- 
function. 
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Nz (Table 9) 

All localization procedures yield an inner shell and a lone pair orbital on each 
atom and three trigonally equivalent banana bond orbitals linking the two atoms. 
(Table 9; the transformation matrix for the density localization method was 
obtained from a wavefunction calculated with a (7/3) basis set because the (9/5) 
wavefunction lead to somewhat distorted bond orbitals (we would like to note 
that N2 wavefunctions calculated with Cartesian Gaussian functions as basis 
functions do not seem to show this distortion)). The lone pair orbitals have a 
large s-type contribution, although it is smaller than in the case of the Bz molecule. 
If one compares the structure of these orbitals with the lone pair orbital in N H 3 ,  
which will be discussed in a subsequent paper, we find that for N H  3 the 2p-con- 
tribution is more than doubled. This gives rise to a much larger extension of the 
lone pair orbital away from the molecule. This can explain why N H  3 will easily 
accept a proton to form NH~ whereas N2 will not. The lone pair orbitals of N2 

Table 10. Transformation matrices for F 2 

ENERGY LOCALIZATION 

iF iF' ZtIF it2F s s s s b~FF' 

l~g 0,69962 r 0.69963 0.05762 0.05762 0,05756 0,05763 0.08759 0.05757 0.03387 
I~ u 0.69917&0.69917 0,06102 0.06101 0.06095 -0.06104 -0.06099 -0,06096 -0.00000 
2~g --0.09896 --0.09897 0.35389 0.35384 0,35380 0.38396 0.35568 0.35356 0.47919 
20 u -0.10565 0,I0565 0,40385 0.40379 0,40335 -0,40398 -0,40360 -0,40343 -0,00001 
~u -0.00000 -0.00000 0,19395 0.37357 -0,56818 -0,45296 -0.08300 0,53660 -0,00001 

-0.00000 -0.00001 -0,54366 0.~4008 0.10376 -0,35765 0,57140 -0.21352 -0.00003 
3~g -0.02705 -0.02708 0.19561 0,19559 0.19528 0,19571 0,19548 0.19532 -0,87706 
l~g 0.00001 0.00000 0.28921 0.28769 -0.57757 0,38069 0.18512 -0,56640 0.00012 

0.00000 0.00000 -0.4995~ 0,50046 -0,00085 0.43377 -0,54692 0,I1279 0.00004 

DENSI ~ LOCALIZATION 

iF iF' s it2F s %tlF' %t2F' f t3F' bqFF' 

ICg 0,69~7 0.69308 0,07935 0.07915 0.07905 0,07933 0~ 0,07902 0,04095 
Ic~ 0.69172 -0.69171 0.08490 0,08468 0.08456 -0.08487 -0.08474 -0,08453 0,00000 
2cg -0.13612 -0o13612 0.36071 0.35988 0,35945 0,36059 0.36013 0.35933 0.43045 
2~ u -0.14673 0.14673 0.40025 0.39919 0,99864 -0.40010 -0.39950 -0.39848 -0.00000 
i~ u 0,00000 0.00000 0.50507 -0.49474 -0,01171 0.52641 -0,46841 -0.05897 0.00031 

0o00000 0,00000 0.27835 0.29784 -0.57777 0.23578 0,33735 -0.57499 0.00045 
3~g -0,0~350 -0.09350 0.17613 0,17533 0,17492 0.17602 0.17556 0,17480 -0.90169 
l~g 0.00000 -0o00000 0,44630 -0.54050 0.09313 -0.47501 0,52176 -0,04616 0.00006 

0,00000 -0.00000 0,36525 0,20332 -0,57032 -0.32723 -0.24694 0.57614 -0.00003 

BOYS LOCALIZATION 

iF iF' ltIF Zt2F ZtBF ZtlF' ;;t2F' Zt3F' b~FF' 

IOg 0.70392 0.70393 0.03718 0,03718 0.03718 0,03718 0.03718 0.03718 0.02613 
I~ u 0.70388 -0.70387 0,03901 0.05901 0,03901 -0.03901 -0,03901 -0,03901 0,00000 
2cg -0,06350 -0~ 0.33444 0.33444 0,33444 0.33444 0,33444 0,334%4 0,56641 
2~ u -0.06757 0.06787 0.40638 0,40638 0,40638 -0,40638 -0.40638 -0.40658 0,0 
~u 0.00000 -0.00000 -0.39192 0,56311 -0,17119 -0,I0676 0,54476 -0.43800 0.0 

0,0 0.00000 0.4Z395 0.12744 -0.85139 -0,56739 0.19124 0,37616 0.00000 
3Og -0,02134 -0.02134 0,23116 0.23116 0.23116 0.23116 0,23116 0.23116 -0.82371 

0.00000 0.0 -0.46223 0.53071 -0.06849 0.00223 -0.50111 0.49888 0,00000 
~Z B.O 0,0 0.34595 0,22732 -0.57327 0.57735 -0.28674 -0.29060 0.0 

MAGNASCO-PERICO LOCALIZATION 

iF iF' ~,tlF ~,t2F ~t3F LtlF' ~t2F' tt3F' boFF' 

iog 0.68277 0.68278 0,10348 0.10348 0.10348 0.10343 0.10343 0.10343 0.08866 
io~ 0.68263 -0.68262 0,10650 0,10650 0,10650 -0,10650 -0,10650 -0,I0650 0.00000 
20~ -0.17553 -0~ 0,33913 0,33913 0.33913 0.33913 0.33913 0,33913 0.49~33 
2~ -0.18447 0.18447 0,39411 0,394ii 0,39411 -0.3941I -0.39411 -0.39411 0,00000 

0.0 0,0 0.40765 0.15025 -0,55790 -0.47496 -0,04680 0.52175 0,0 
l~u 0.0 0,0 -0.40885 0.55746' -0.14861 -0.32825 0,57545 -0,24720 0,0 
3~g -0.05482 -0.05482 0,20239 0.20239 0.20239 0,20239 0,20239 0.20239 -0.86500 

0,0 0,0 0.47496 0,04680 -0,52175 0,40765 0.15025 -0.55790 0.0 
1~g 0.0 0,0 -0,32825 0.87545 -0.24720 0.40885 -0.55746 0.1r 0.0 
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are close to 2s-atomic orbitals. Hall and Lennard-Jones [8] have discussed this in 
detail. The banana bonds show a fairly small contribution of the s- and 2pa-type 
functions, the 2pro-contribution is dominating. 

F 2 (Table 10) 

Localization gives an inner shell orbital, three trigonally equivalent lone pair 
orbitals on each F atom and a bond orbital which is mostly formed by the 2pa- 
functions (Table 10). No preferential orientation of the two sets of trigonal lone 
pair orbitals with respect to each other exist, which agrees with earlier studies 
[4, 9-]. For  a group-theoretical explanation see the recent article of England [18]. 

6. Conclusions 

In this paper we have presented the applications of the density localization 
method to a number of homonuclear diatomic molecules. A good agreement 
between the ELMO's  and DLMO's  was found, as expected. For  most of the atoms 
and molecules investigated so far the LMO's calculated by the four localization 
methods agree qualitatively and frequently quantitatively with the exception of 
the C 2 molecule, which seems to present a particular case. The best quantitative 
agreement is found in general between the ELMO's  and the BLMO's. The agree- 
ment between the ELMO's  and DLMO's  is about as satisfactory, whereas the 
MPLMO's  show sometimes a more marked difference. 

All four methods have their justification and it depends on the problem under 
investigation (and on the preference of the user) which method is to be applied. 

The Edmiston-Ruedenberg method is completely general and works reliably 
in all cases examined so far. It is the only method which uses the energy criterion 
for the localization. Unfortunately the computation time needed to determine the 
ELMO's  is considerable. The density localization method stresses the charge 
density aspect of the electronic structure of atoms and molecules. This method 
is completely general as well, but appears to be more sensitive against the choice 
of the wavefunction at least in a few cases (C 2, N2). From the physical point of 
view it is complementary to the energy localization method. Examining the 
calculations we can establish this method as a new localization method which 
adds information to our knowledge about the concept of localization and of 
localized orbitals. The procedures of Boys and of Magnasco and Perico have the 
advantage of requiring very little computation time. The method of Boys is 
intrinsic in character and simple in its structure. Therefore we tend to prefer it 
over the localization procedure of Magnasco and Perico. The restrictions to the 
applicability of this method seem to be of minor importance. As discussed before 
the Magnasco-Perico localization method is external in character, the MPLMO's  
thus depend on our choice of the orbital structure. This is in some respect a 
disadvantage limiting the applicability of the method, but for some purposes this 
may give an added flexibility which can be of use. 
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